

SUIVI DE L'ÉPIDÉMIE DE COVID-19 ET PROJECTIONS DES BESOINS HOSPITALIERS AU QUÉBEC

Approches méthodologiques

Mise à jour 1^{er} mars 2021

Institut national d'excellence en santé et en services sociaux

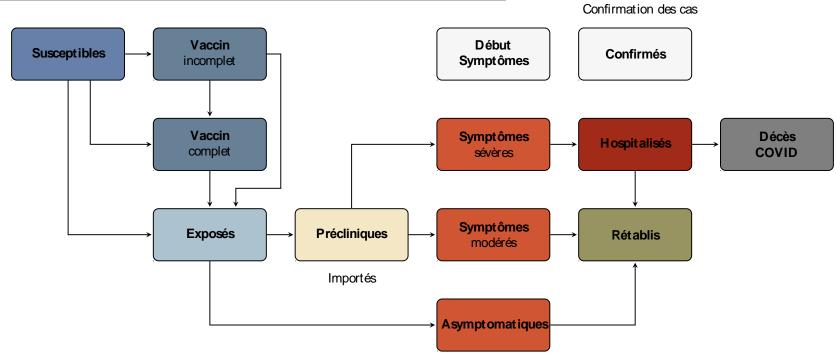
SOMMAIRE MÉTHODOLOGIQUE

ÉVOLUTION À COURT TERME DE L'ÉPIDÉMIE ET DES BESOINS HOSPITALIERS

Objectif

Suivre l'évolution de l'épidémie de SRAS-CoV-2 pour évaluer les besoins hospitaliers.

Résumé méthodologique


1 ère étape: À partir des hospitalisations observées, un modèle de transmission du COVID-19 a été développé pour prédire le nombre de nouvelles hospitalisations anticipées.

2^e étape: Sur la base de ces prédictions, les besoins en ressources hospitalières (occupation des lits sur les étages et aux soins intensifs) sont projetés sur un horizon de 4 semaines.

1 MODÈLE DE TRANSMISSION DE TYPE SEIR

ESTIMER LE R(T) ET PRÉDIRE NOUVELLES ADMISSIONS

Modèle semi-mécanistique

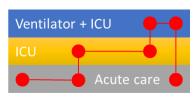
L'impact des interventions est capturé indirectement à l'aide d'un taux de transmission qui varie dans le temps.

Permet

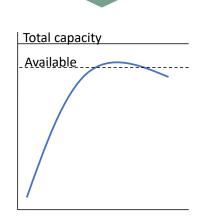
- D'estimer le nombre journalier de nouvelles hospitalisations.
- D'élaborer des scénarios en variant le taux de transmission.

2

MODÈLE DE DEMANDE EN RESSOURCES


PRÉDIRE LES BESOINS EN RESSOURCES

Admissions passées (observations) et futures (du modèle transmission)


Day	Arrivals
2/27	3
2/2	13
6/	

Trajectoires d'utilisation

Estimation de la demande en ressources

Modèle de Markov

Les trajectoires d'utilisation des soins pour les personnes atteintes de COVID-19 nouvellement admises en centres hospitaliers.

Permet

- Une estimation de l'utilisation des ressources sur un horizon de 4 semaines.
- D'examiner l'impact de différentes politiques d'utilisation des ressources.

Institut national d'excellence en santé et en services sociaux

QUÉDEC

Précisions méthodologiques

Équations, paramètres et statistiques

Modèle de transmission de la COVID-19

Étape 1

PRÉCISIONS MÉTHODOLOGIQUES

SCHÉMA DU MODÈLE MATHÉMATIQUE

Diagramme du modèle

Susceptibles Vaccin incomplet Vaccin Symptômes Vaccin complet Vaccin complet Vaccin complet Vaccin complet Vaccin complet Vaccin complet Symptômes sévèr es Précliniques Asymptômes modér és Rétablis

Force d'infection

Cette quantité est calculée comme suit:

$$\begin{split} & \lambda_t \\ &= \beta_t \, \times \left(\, S_t + (1 - \nu_i) \, V_{it} \, + (1 - \nu_c) \, \times \, V_{ct} \right] \right) \times \frac{I_p + I_s + I_l + \theta I_a}{N} \end{split}$$

où β_t est le taux de contact; S_t le nombre de personnes susceptibles; V_{it} et V_{ct} sont le nombre d'individus avec vaccination incomplète et complète, respectivement; v_i et v_c sont l'efficacité du vaccin (dosage incomplet et complet); I_p, I_s, I_l , et I_a sont le nombre de personnes infectieuses dans le stade préclinique, avec symptômes sévères, légers et asymptomatiques, respectivement.

Note

- La force d'infection est le taux per capita auquel les individus susceptibles acquièrent l'infection.
- Le nombre de cas importés *Z(t)* provient du fichier *Trajectoire de santé publique (TSP)*.
- Le nombre de personnes vaccinées A(t) provient des rapports Vigie des activités de vaccination contre la COVID-19 et de suivi des couvertures vaccinales au Québec.
- Les périodes de latence et d'infectiosité suivent des distributions d'Erlang-2.
- Un algorithme de Euler avec un pas de temps de 1.2 heures est utilisé pour résoudre numériquement le système d'équations différentielles.

PRÉCISIONS MÉTHODOLOGIQUES

PRINCIPAUX PARAMÈTRES DU MODÈLE

Table 1. Liste des paramètres du modèle

Paramètres	Symboles	Valeurs	Références
Taux de transmission	$\beta(t)$	Calibré	Non-applicable
Réduction de l'infectiosité chez les asymptomatiques		50%	1-3
Durée de la période pré-infectieuse (latente)	$1/\rho$	4.2 jours	1, 3
Durée de la période d'incubation	$1/\varepsilon$	5.2 jours	4, 5
Fraction d'infections symptomatiques	κ_{s}	67.4%	3*
Fraction d'infections symptomatiques requérant une hospitalisation (paramètre de référence)	κ_h	Calibré	Non-applicable
Ratio des probabilités d'hospitalisations avec un programme de vaccination (vs. sans programme)	$\Gamma(t)$	Varie	8
Durée de la période infectieuse (communauté)	$1/\sigma_c$	5 jours	1, 7
Durée de l'hospitalisation	$1/\sigma_d$	12.7	MSSS
Proportion des hospitalisations qui vont décéder	μ	30.2%	MSSS
Délai entre l'apparition des symptômes et le dépistage		2.5 jours	Prémisse
Proportion des cas symptomatiques qui seront dépistée	$\omega(t)$	60%	Prémisse
Efficacité du vaccin après un dosage incomplet	ν_1	92 %	9
Efficacité du vaccin lorsqu'immunisé avec toutes les doses	$\overline{ u_2}$	95%	10
Nombre de cas importés (par jour)	Z(t)	Varie	MSSS
Nombre de cas vaccinés (par jour)	A(t)	Varie	MSSS

^{*}Paramètres standardisées à la distribution d'âge du Québec et du taux d'attaque par âge de la première vague.

- 1. Davies N, Kucharski A, Eggo R, Gimma A, CMMID COVID-19 Working Group, Edmunds W. The effect of non-pharmaceutical interventions on COVID-19 cases, deaths and demand for hospital services in the UK: a modelling study. Centre for Mathematical Modelling of Infectious Diseases, LSHTM; 2020.
- 2. Ferguson N, Laydon D, Nedjati-Gilani G, İmai N, Ainslie K, Baguelin M, et al. Impact of non-pharmaceutical interventions (NPIs) to reduce COVID-19 mortality and healthcare demand. London, UK: Imperial College London; 2020.
- 3. Kerr C, Stuart R, Mistry D, Abeysuriya R, Hart G, Rosenfeld K, et al. Covasim: an agent-based model of COVID-19 dynamics and interventions. medRxiv. 2020.
- 4. Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected Pneumonia. N Engl J Med. 2020;382(13):1199-207.
- 5. Gatto M, Bertuzzo E, Mari L, Miccoli S, Carraro L, Casagrandi R, et al. Spread and dynamics of the COVID-19 epidemic in Italy: Effects of emergency containment measures. Proc Natl Acad Sci U S A. 2020;117(19):10484-91.
- 6. Verity R, Okell LC, Dorigatti I, Winskill P, Whittaker C, Imai N, et al. Estimates of the severity of coronavirus disease 2019: a model-based analysis. Lancet Infect Dis. 2020.
- 7. Kucharski AJ, Russell TW, Diamond C, Liu Y, Edmunds J, Funk S, et al. Early dynamics of transmission and control of COVID-19: a mathematical modelling study. Lancet Infect Dis. 2020.
- 8. INSPQ. Vigie des activités de vaccination contre la COVID-19 et de suivi des couvertures vaccinales au Québec. 2021.
- 9. Food U, Administration D. Vaccines and Related Biological Products Advisory Committee meeting—December 17, 2020—FDA briefing docume vaccine.
- 10. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. Nev Medicine. 2020;383(27):2603-15.

PRÉCISIONS MÉTHODOLOGIQUES

STRUCTURE D'ÂGE DE LA POPULATION NON-VACCINÉE

Ratio des probabilités d'hospitalisations (par semaine)

- La structure d'âge de la population non-vaccinée est affectée par la priorisation vaccinale des personnes plus âgées. Ceci aura un impact sur la probabilité qu'un cas de SRAS-CoV-2 soit hospitalisé.
- Ce facteur est pris en compte par le paramètre $\Gamma(t)$ qui correspond au ratio des probabilités d'hospitalisation de la population avec un program de vaccination par rapport à la population initiale. Cette quantité est calculée à partir des distributions d'âge des personnes vaccinées et non vaccinées du Québec, et du taux d'attaque par âge de la première vague.

$$\Gamma(t) = \frac{\sum hosp_a \times U_a(t) + \sum hosp_a \times (1-\nu_i)V_{ia}(t) + \sum hosp_a \times (1-\nu_c)V_{ca}(t))}{\sum U_a(t) + (1-\nu_i)V_{ia}(t) + (1-\nu_c)V_{ca}(t)} \bigg/ \frac{\sum hosp_a \times N_a}{\sum N_a}$$

où $hosp_a$ est la proportion d'infections symptomatiques requérant une hospitalisation pour chaque tranche d'âge; $U_a(t)$ $V_{ia}(t)$ et $V_{ca}(t)$ sont le nombre de personnes non-vaccinées, vaccinées avec dosage incomplet et complètement vaccinées (N_a est la population du Québec; ces nombres sont ensuite ajusté aux taux d'attaque par âge de la première vague; données Héma-Québec); v_i et v_c sont l'efficacité du vaccin.

SOURCES DES DONNÉES

Nombre d'hospitalisations journalier

- Données MED-ECHO et GESTRED.
 - Les transferts provenant des CHSLD ne sont pas pris en compte pour calculer le taux de transmission. Cependant, le modèle de projections des hospitalisations comptabilise les transferts passés.

Séroprévalence

 Étude de séroprévalence HÉMA-Québec portant sur 7691 échantillons de personnes âgées de 18-69 ans ayant fait un don de sang entre le 25 mai et le 9 juillet.

CADRE BAYESIEN – FONCTIONS DE VRAISEMBLANCE

Fonctions de vraisemblance

Hospitalisations: Le nombre observé de nouvelles hospitalisations ($Hosp_t$) au temps t suit une loi binomial négative :

$$Hosp_t \sim NB\left(H_t, H_t + \frac{{H_t}^2}{r}\right)$$

où H_t est le nombre d'hospitalisations prédit par le modèle et r est le paramètre de « sur-dispersion ». Pour ce dernier, une distribution gamma est utilisée :

$$r \sim Gamma(100, 0.01)$$

Séroprévalence: La proportion de la population ayant été infectés par le SRAS-CoV-2 suit une loi binomiale:

$$Sero_t^{Num} \sim Binomial\left(\frac{R_t}{N_t}, Sero_t^{Denom}\right)$$

où $\frac{R_t}{N_t}$ est la fraction cumulative de personnes rétablies; et $Sero_t^{Num}$ et $Sero_t^{Denom}$ sont, respectivement, les numérateur et dénominateur de la séroprévalence.

CADRE BAYESIEN – DISTRIBUTIONS À PRIORI

Distributions à priori

 Le nombre d'individus infectieux au début de la simulation (28 février 2020) est entre 1 et 75.

$$Z_{t=0} \sim Uniform(1,75)$$

La fraction de cas symptomatiques requérant une hospitalisation:

$$\kappa_h \sim Uniform(\frac{0.030}{\kappa_s}, \frac{0.062}{\kappa_s})$$

■ Le paramètre de transmission *R(t)* au début de l'épidémie correspond à un R₀ de 2.6 (95%CI: 2.1-2.8). Une transformation logistique est utilisée afin de restreindre ce taux entre 0 et 3.

$$\beta_{t=0} \sim logit^{-1} \left(Normal \left(logit(\frac{2.6}{3}), 0.5 \right) \right) \times \frac{3}{\sigma_c}$$

■ Les taux de transmission pour les *t>0* sont modélisés comme une marche aléatoire de premier ordre et où la pénalité a une distribution à priori de Cauchy tronquée:

$$\beta_{t} \sim logit^{-1} \left(Normal \left(logit(\frac{\beta_{t-1}}{3} \sigma_{c}), \sigma_{rw} \right) \right) \times \frac{3}{\sigma_{c}}$$

$$\sigma_{rw} \sim HC(0, 25)$$

CADRE BAYESIEN – INFÉRENCES STATISTIQUES

Procédure d'estimation

- Le modèle est calibré aux données en utilisant des méthodes de *Monte-Carlo par chaînes de Markov*.
- Ces méthodes permettent d'obtenir des échantillons de la distribution postérieure du vecteur de paramètres. L'avantage de l'utilisation de méthodes Bayésiennes est la propagation efficace de l'incertitude aux résultats.
- La librairie Nimble de R est utilisé. Des algorithmes adaptatifs de marche aléatoire de type Metropolis-Hasting et Automated Factor Slice Sampling permettent une bonne convergence des chaînes.

Note : Un total de 8 chaînes MCMC de 30,000 itérations sont utilisées (warm-up de 5,000 et intervalle d'éclaircissement de 20). L'examen des chaînes permet de s'assurer de la convergence de l'algorithme.

INDICATEURS

DÉTAILS DES CALCULS

Taux de transmission

 Le taux de transmission (r_t) est calculé à partir des distributions postérieur des taux de contacts estimés.

$$r_t = \left(\kappa_s \frac{\beta_t}{\sigma_c} + (1 - \kappa_s) \frac{\theta \times \beta_t}{\sigma_c}\right) \times \left(\frac{S_t}{N_t} + (1 - \nu_i) \frac{V_{i_t}}{N_t} + (1 - \nu_c) \frac{V_{c_t}}{N_t}\right)$$

■ Les intervalles de crédibilité à 50% et 95% correspondent au 25^e et 75^e et au 2.5^e et 97.5^e percentiles de la distribution postérieure est estimés.

ÉQUATIONS DU MODÈLE MATHÉMATIQUE

SYSTÈME D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES

Susceptibles (S):

$$\frac{dS(t)}{dt} = -\beta(t)S(t)\frac{\sum_{i=1}^{2} \left(P^{i}(t) + I_{s}^{i}(t) + \theta I_{a}^{i}(t) + I_{h}^{i}(t)\right)}{N} - A_{i}(t)$$

où $A_i(t)$ est le nombre de personnes vaccinées (dosage incomplet) au temp t.

Vaccinés (V):

$$\frac{dV_i(t)}{dt} = A_i(t) - \beta(t)(1 - \nu_i)V_i(t) \frac{\sum_{i=1}^{2} \left(P^i(t) + I_s^i(t) + \theta I_a^i(t) + I_h^i(t)\right)}{N} - A_c(t)$$

où $A_c(t)$ est le nombre de personnes vaccinées (dosage complet) au temp t.

$$\frac{dV_c(t)}{dt} = A_c(t) - \beta(t)(1 - \nu_c)V_c(t) \frac{\sum_{i=1}^{2} \left(P^i(t) + I_s^i(t) + \theta I_a^i(t) + I_h^i(t)\right)}{N}$$

Exposés (E):

$$\frac{dE^{1}(t)}{dt} = \beta(t)(S(t) + (1 - \nu_{i})V_{i}(t) + (1 - \nu_{c})V_{c}(t))\frac{\sum_{i=1}^{2} (P^{i}(t) + I_{s}^{i}(t) + \theta I_{a}^{i}(t) + I_{h}^{i}(t))}{N} - 2\varepsilon E^{1}(t)$$

$$\frac{dE^{2}(t)}{dt} = 2\varepsilon E^{1}(t) - 2\varepsilon E^{2}(t)$$

Pré-clinique (asymptomatique infectieux) (P):

$$\frac{dP^{1}(t)}{dt} = \kappa_{s} 2\varepsilon E^{2}(t) - 2\rho P^{1}(t) + Z_{t}$$
$$\frac{dP^{2}(t)}{dt} = 2\rho P^{1}(t) - 2\rho P^{2}(t)$$

où Z_t est le nombre de cas importés qui deviennent infectieux au temps t.

ÉQUATIONS DU MODÈLE MATHÉMATIQUE

SYSTÈME D'ÉQUATIONS DIFFÉRENTIELLES ORDINAIRES (SUITE)

Infectieux (symptomatique, sans complications) (I_s):

$$\frac{dI_s^1(t)}{dt} = (1 - \kappa_h \Gamma(t)) 2\rho P^2(t) - 2\sigma_c I_s^1(t)$$
$$\frac{dI_s^2(t)}{dt} = 2\sigma_c I_s^1(t) - 2\sigma_c I_s^2(t)$$

Infectieux (symptomatique, avec complicaiton / pré-hospitalisation) (I_h):

$$\frac{dI_h^1(t)}{dt} = (\kappa_h \Gamma(t)) 2\rho P^2(t) - 2\sigma_c I_h^1(t)$$

$$\frac{dI_h^2(t)}{dt} = 2\sigma_c I_h^1(t) - 2\sigma_c I_h^2(t)$$

Infectieux (asymptomatique) (I_a) :

$$\frac{dI_a^1(t)}{dt} = (1 - \kappa_s) 2\varepsilon E^2(t) - 2\left(\frac{1}{\sigma_c} + \frac{1}{\rho}\right)^{-1} I_a^1(t) + Z_t \times (1/\kappa_s)$$

$$\frac{dI_a^2(t)}{dt} = 2\left(\frac{1}{\sigma_c} + \frac{1}{\rho}\right)^{-1} I_a^1(t) - 2\left(\frac{1}{\sigma_c} + \frac{1}{\rho}\right)^{-1} I_a^2(t)$$

où Z_t est le nombre de cas importés qui deviennent infectieux au temps t.

Hospitalisés (H):

$$\frac{dH(t)}{dt} = 2\sigma_c I_h^2(t) - \sigma_d H(t)$$

Rétablis (R):

$$\frac{dR(t)}{dt} = 2\left(\frac{1}{\sigma_c} + \frac{1}{\rho}\right)^{-1} I_a^2(t) + 2\sigma_c I_s^2(t) + (1 - \mu)\sigma_d H(t)$$

Précisions méthodologiques

Équations, paramètres et statistiques

Modélisation des besoins en ressources hospitalières

Étape 2

MODÉLISATION DES TRAJECTOIRES

MODÈLE DE MARKOV – INDICES ET ÉTATS

Indices

- I états de Markov (besoin courant en ressources)
- J états de Markov (besoin en ressources après la transition)
- T jours de la simulation (t = 1,...,T)

États (niveau des besoins en ressources)

- 1. Lits en soins actif avant les soins intensifs (SI) (actifs 1)
- 2. Aux SI
- 3. Aux SI et ventilé
- 4. Lits en soins actif avant les SI (actifs 2)
- 5. Congé hospitalier
- 6. Décès

MODÉLISATION DES TRAJECTOIRES

MODÈLE DE MARKOV – INTRANTS, PARAMÈTRES ET INDICATEURS

Intrants

- n^0 , un vecteur avec la distribution initiale de longueur I pour laquelle n^0 est le nombre d'individus nécessitant I.
- A, une matrice de dimension *I* × *T* qui décrit les nouvelles admissions en centre hospitalier et nécessitant des ressources spécifique (obtenu du modèle de transmission).

Paramètres

■ P^* , est une matrice de transition de dimensions $I \times J$ où $p^*_{i,j}$ est la probabilité de transition (par jour) de l'état i à l'état j, conditionnellement à son état actuel (diapo suivante).

Indicateurs

■ N, est une matrice $I \times T$ contentant le nombre d'individus nécessitant les ressources de l'état I au jour t.

Institut nat d'excellence

Institut national d'excellence en santé et en services sociaux

Québec

PRÉCISION MÉTHODOLOGIQUES

TRANSITIONS ET PRÉCISIONS

P_{ii}* - Transitions au au prochain état en fonction de l'état actuel

$p^*_{i,j}$	1 (actifs 1)	2 (SI)	3 (SI + respirateur)	4 (actifs 2)	5 (congé)	6 (décès)
1 (actifs 1)	$p^*_{1,1}$	p* _{1,2}	p* _{1,3}	0	p* _{1,5}	$p^*_{1,6}$
2 (SI)	0	$p^{*}_{2,2}$	0	$p^{*}_{2,4}$	$p^{*}_{2,5}$	$p^*_{2,6}$
3 (SI + respirateur)	0	0	$p^*_{3,3}$	$p^*_{3,4}$	$p^*_{3,5}$	$p^*_{3,6}$
4 (actifs 2)	0	0	0	$p^{*}_{4,4}$	$p^{*}_{4,5}$	$p^*_{4,6}$
5 (congé)	0	0	0	0	1	0
6 (décès)	0	0	0	0	0	1

Notes

- Les décès et les congés sont des états "absorbants".
- Les personnes hospitalisées requerront des SI avec ou sans ventilation et ne transitionnent pas entre ces états (les données actuelles ne permettant pas un suivi longitudinal de l'utilisation des respirateurs).
- Les individus ne peuvent pas passer du stade de soins actifs 1 (état 1) au stade de soins actifs 2 (état 4).
- Les probabilités de transition $(p^*_{i,j})$ sont estimées à partir de données hospitalières (MED-ECHO Live) des quatres dernières semaines.

Équipes et collaborateurs U McGill, U Laval, INESSS, INSPQ

COLLABORATEURS

ÉQUIPES DE MODÉLISATION

Université McGill

Mathieu Maheu-Giroux et David Buckeridge

Alexandra Schmidt Alton Russell

Arnaud Godin Maxime Lavigne

Yiqing Xia Yannan Shen

Dirk Douwes-Schultz Aman Verma

Collaborateurs à l'Université Laval

Marc Brisson, Guillaume Gingras, Cathy Blanchette, Mélanie Drolet

Contexte

Travaux réalisés dans le cadre d'un mandat confié par l'INESSS, avec la collaboration d'une équipe constituée de scientifiques de l'INESSS et de l'INSPQ.

https://www.inspq.qc.ca/covid-19/donnees/projections/hospitalisation

Québec

2535, boulevard Laurier, 5e étage Québec (Québec) G1V 4M3 Téléphone : 418 643-1339 Télécopieur : 418 646-8349

inesss.qc.ca inesss@inesss.qc.ca

Montréal

2021, avenue Union, 12^e étage, bureau 1200 Montréal (Québec) H3A 2S9

Téléphone : 514 873-2563 Télécopieur : 514 873-1369

